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ABSTRACT

The epistemological status of factors--that is, components, common factors,

and image factors--is briefly discussed. Implications for the number of

factors problem of varying views of factor analysis and the particular factor

analytic model employed are noted, and the rationales underlying the best

known decision rules regarding the cori ct number of factors are discussed.

The results of a study are presented, in which reanalyses were performed on

17 correlation matrices found in the literature, and eight well-known rules and

one new rule for determining the correct number of factors were applied. The

rules are compared in light of the factor analytic model implied in each case,

and so e implications for practice are noted.



SOME EMPIRICAL FINDINGS CONCERNING
THE NUMBER OF FACTORS PROBLEM

A. RALPH HAKSTIAN and VICTOR J. MULLER

University of Alberta

There is probably no facet of the factor analytic process that appears

more arbitrary or intractable than that concerned with determining the

"correct" number of factors to represent the variables at hand. A unique

solution is, indeed, not theoretically possible, in that the decision reached

regarding the "true" dimensionality of a domain of variables depends entirely

upon which one of a number of seemingly reasonable operationalizations of

the "correct" number of factors Is employed. One may be tempted to infer,

from the last sentence, that he merely needs to agree upon an underlying

rationale from among many, marshal several arguments to support it, and apply

the associated rule of thumb, regarding the number of factors, to his data--

all with unequivocable results. In fact, the problem is not so easily

handled. For one thing, even though rationales may exist to support the

hypotheses of r, r, and r, factors from n variables, the ultimate inter-

pretation of each factor determined will depend upon the number of additional

factors extracted and transformed. That is, the final complexion of Factor I

in a solution of r, transformed factors may well be quite distinct from that

of Factor I in a solution of r2
transformed factors. It is, in short, common

-

knowledge among factor analysts that the transformation of axes is very

sensitive to the number of factors transformed.

If we leave the procedural level for a moment and consider what is

implied in our notion of a factor, the number of factors problem displays still
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another facet of complexity. It appears that factors may be conceived of

two ways. The first conceptualization--and the more formally stated one--

places factors in Feigl's nomological net (see Feigl and Scriven, 1956;

Royce, 1963), giving them the status of determiners of covariation among the

more phenotypic constructs in the domain of interest. Consistent with this

position--which we may call an explanatory view--is the notion, expressed

by Cattell (1958, 1962) and Humphreys (1964), among others, that an indefin-

itely large number of such epistemologically defined constructs may be conceived

of as influencing any variable under investigation. In addition, fur the

ok sample of variables at hand, the number of variables influenced by each factor

will likely be small. The number of factors problem in this case, then,

reduces to the task of identifying those factors whose influence is great upon

the variables sampled from the domain of interest, and those whose influence,

while real, is slight. A second conceptualization of factors--and in some

cases a view held largely by default, that is because little theoretical

charting of the domain of interest has been done--gives these constructs a

somewhat lesser role than the first view, namely, as convenient groupings

of variables. This position may be identified as a taxono ic view of factors

and factor analysis. The implication of this view for the number of factors

problem is that the number of factors seen as necessary to embrace the n

variables in an analysis is considerably less than n. Additionally, the notion

of a universe of psychological Interest, from which variables are sampled, is

not generally appropriate.

Another complicating Issue involving the number of factors problem has

to do with the factor analytic model employed. Up to this point, we have

refrained from distinguishing between "factor analysis" in a generic sense

and the more specific notion of "common-factor analysis." Three linear models
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are available for conducting a "factor analysis" in the broadest sense of the

expression. The simplest of these is the component model, and although the

original development and much subsequent application of principal component

analysis were concerned with conceptual matters quite distinct from those

generally associated with common-factor analysis in its psychometric tradition,

the taking of the first r principal components, usually with subsequent

transformation--a process known as incomplete com.onent 11111,21yEla--has been

often used analogously to common-factor analysis. Indeed, by far the most

widely used computing center program for "factor analy I " yields varimax-

r tated principal components. The component model comes closest of the three

models to exemplifying the taxonomic view of factor analysis.

The oldest of the three models is the common-factor model. Largely as

a result of the mathematically intractable problem of communality, many users,

over the years, have substituted component analyses for common-factor analyses.

It is the common-factor model that is most directly implied by Guttman's

fertile notion of sampling variables from a universe of interest. Although

reduction of each variable (to its common part) occurs in common-factor

analysis, few users would expect anything approaching exact rank reduction of

the variable space, so that the implication of this model for the number of

factors problem is that a small number (y1/2 or less) of interpretable and useful

factors must be identified, the remaining factors being considered insignificant.

Most analyses based upon the explanatory view of factor analysis employ this

model. Throughout the remainder of this paper, the expressions "factors" and

"factor analysis" will be used with reference to the broad class of analyses--

utilizing any of the three models; "common-factors" and "common-factor an lysis"

will indicate this particular model.

A third model, which combines features of both the component and common-
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factor models is Cattman's (1953) ae model. As with the component model,

the (image) factors obtained are linear combinations of the observed variables;

the problem of the unknown communalities is, thus, circumvented. Concep-

tually, however, the image model is closer to the common-factor than to the

component model. Guttman has shown, for example, that as we approach the

inferential limit (as the universe of variables of interest is sampled more

and more extensively), the image and the common-factor models become one.

The image model, then, has much to recommend it as a substitute for the common-

factor model, in the conduct of an analysis based on an explanatory view of

factor analysis; a corollary is that the appropriate number of image factors

corresponds to that of common-factors.

Within the traditions and models outlined above, four classes of criteria

have been invoked to answer the number of factors question. These criteria,

listed earlier by Kaiser (1960) are (1 ) algebraic criteria, establishing

lower and upper bounds on the rank of the matrices involved, (2) psychometric

criteria, dealing with the internal consistency of the constructs obtained,

(3) statistical criteria, dealing with reproducing the observed dispersion

or correlation matrix to a tolerance level ascribable to sampling error, and

(4) psychological importance criteria, concerned with the meaningfulness or

interpretability of the factors obtained.

Strictly speaking, the rules of thumb for the number of factors that seem

to have sprung from the work on Allgraic bounds on the rank of the reduced

correlation matrix have not been fully justified. DA such papers as those

by Ledermann (1937 ), Albert (1944), and Guttman (1954, 1958), proofs were

given regarding limits on the rank of a reduced correlation matrix R - U2

(where R, of order n x n, is, of course, the observed correlation matrix, and

U
2

, of order n x n, is the diagonal matrix of unique variances), but the

bounds that have been established may be a long way from the optimal number
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factors to retain. An example of the faulty interpretation that has

been widespread is that concerning Guttman's (1954) weaker lower hound,

in which an elegant proof on a universally weakest lower bound to the rank of

a gramian R U 2 was translated into a rule of thumb concerned with the number

of principal components to retain! Kaiser's (1960) later observations regar-

ding the "roots of R greater than unity" rule gave some psychometric justi-

fication to the aforementioned misinterpretation, but it seems safe to say

that the work On algebraic considerations has been interesting as lending

theoretical insight, but has not provided a practical answer to the number

of factors problem.

Kaiser (1960, 1964) has employed psychometric logic in answering the

number of factors question. He has pointed out that for a principal component

to have positive alpha internal consistency, its associated latent root must

exceed unity, thereby adding some procedural justification to Guttman

(1954) work on lower bounds; the "Kaiser-Guttman rule" is in widespread use

today. The application of the preceding logic to the common-factor model

led to alpha factor analysis (Kaiser and Caffrey, 1965).

To this point, problems of statistical inference to populations of

persons have been avoided. Instead, the problems of inference to populations

of variables--in the common-factor and image models--have been implied,

with the classical problems of statistical inference largely ignored. There

is, however, a long tradition of factor analysis as an inferential statistical

procedure, in which the correct number of factors for a set of data is that

number capable of yielding a reproduced correlation matrix in which the entries

are simultaneously within normal sampling error of the observed coefficients.

Inferential procedures--largely involving the distinguishability of the latent

roots--have been applied to the component model by Hoel (1937), Bartlett (1950,

1951), Lawley (1956), and Anderson (1963). These procedures have generally
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been considerably more complicated and less useful when applied to correlation

than to covariance matrices. Tests of significance for the common-factor

model have been discussed by Thurstone (1938), Lawley (1940, 1953), Coombs (1941),

Young (1941), McNemar (1942), Saunders (1948), Bartlett (1950, 1951), Burt (1952),

Whittle (1952), Rippe (1953), Rao (1955), Anderson and Rubin (1956), Jöreskog

(1962, 1963, 1967), Lawley and Maxwell (1963), and Harman (1967). One disad-

vantage seen for these procedures is that they are most appropriate when the

factors are obtained by the method of maximum-likelihood, and this method

has, in the past, often presented computing problems. With JOreskog's (1967)

recent work, however, these problems have been minimized. Other objections

to the usual significance testing procedures employed focus on the non-indep-

endent nature of the sequential tests performed, and the consequent lack of

rigorous control over Type I error. A perhaps more compelling objection

centers around the dependence of this approach upon the total sample size,

with the resulting problem of "statistical but not practical significance"

with particularly large N.

The notion of psychological (or sociological, educational, etc.) impor-

tance has led to several attempts at operationalization. Based on the rationale

of an indefinitely large set of influences on each variable, Cattell (1958)

established rules for how much common-factor variance should be accounted

for before factoring should be terminated, and arrived at the widely used

"scree" test or, alternatively, test for the "break In the curve" of plotted

latent roots somewhat later (see Cattell, 1966). Humphreys (1964) found that

the Kaiser-Guttman rule of retaining the number of factors (actually components)

corresponding to latent roots of R greater than one tended to suggest fewer

factors, with a large sample, than could be meaningfully interpreted. Various

operationalizations of the importance rationale were given by Pennell (1968),

Linn (1968), and Cliff (1970), the latter two applications being based upon

9
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monte carlo procedures. Horn (1965) presented a technique for determining the

number of non-error latent roots of R greater than unity, again using random

data generation. Humphreys and Ilgen (1969) discussed the generalization of

Horn's (1965) procedure to the common-factor model. Informal operationalizations

of importance in terms of the component model have been widely ud over the

years, with the usual rule involving extracting components until the percentage

variance accounted for by those extracted exceeds some arbitrary value,

for example, 80%.

Interesting papers containing discussions of the number of factors

problem are those by Wrigley (1958), Kaiser (1960,1964), Harris (1962, 1964),

and Browne (1968), in addition to many of the papers already noted. Little

work on the problem has been done from the image theoretical viewpoint.

Harris (1962) showed the interrelations existing between the component common-

factor, and image models, and related each model to the matrix S
-1

RS
-1

, where

the diagonal matrix S
2

[diag(R
-1

)]
-1

. A class of scale-free solutions was

-
implied, and the number of roots of S

1
RS

-I greater than one was shown to

have applicability to both the common-factor and image models and to correspond

to Guttman's (1954) stronger lower bound. Kaiser (1963) further developed

this bound as a useful cutoff for image analysis and suggested further that

an analytic orthogonal rotation of these image factors could be expected to

result in "residualization" of the less important factors, thereby providing

an importance-based rule for the number of image factors to retain. Finally,

Kaiser (1970) utilized Harris's (1962) class of solution!, in arriving at his

"Second Generation Little Jiffy" procedure. This program includes a number

of factors rule, which will be developed further in the next section.

The preceding notions, characterization, and summary of the traditions and

procedures in factor analysis are presented schematically in Figure 1.

Insert Figure 1 about here
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Most of what appears in this figure should be clear from the preceding text.

The broken line connecting the taxonomic view of factor analysis with the

common-factor and image models indicates that although these models could

be employed in the light of the taxonomic view, the component model would

appear to be more appropriate. On the other hand, the component model is

seen as unsatisfactory in connection with the explanatory view of factor

analysis, except, perhaps, when employed to get a preliminary solution

for use as an indicator of what to expect in a final co on-factor or

image solution. The remainder of the paper is devoted to comparing the

decisions reached, regarding the appropriate number of factors to be retained,

by the more prominent rules already noted.

Method

Reanalyses were performed on 17 correlation matrices found in the liter-

ature. For each data set eight well-known rules for deciding on the number

of factors to retain were applied, and the decisions reached in each case

were compared. The three models were used. The data reanalyzed ranged in

size from a six variable set to one having 34 variables, each set having

been reanalyzed by Tbreskog (1963) in connection with his early non-iterative

statistical pr cedure. The 17 data sets--in ascending order of size, and using

the identifying numbers used later in this paper--were found in (1) McLeish (1950),

2) Chapman (1949), (3) Har (1967)--the Eight Physical Variables--(4)Kar-

lin (1941), (5) Davis (1944), (6) Emmett (1949), (7) Denton and Taylor (1955),

(8) Harman (1967)--the Thirteen Psychological Tests--(9) Bechtoldt (1961)

first sample--(10) Bechtoldt (1961)--second sample--(11) Rimoldi (1948),

(12) Harman (1967)--the Twenty-Four Psychological Tests--(13) Pemberton (1952),

(14) Ahmavaara and Markkanen (1958), (15) Fleishman and Hempel (1954),

(16) Karlin (1942), and (17) Green, Guilford, Christensen, and Comrey (1953).
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First, principal component solutions were obtained and two number of

factors criteria were applied: (1) the Kaiser-Guttman rule of latent roots

of R greater than one, and (2) a scree test on the plot of latent roots.

Common-factor solutions were obtained for each data set by four different

methods: (1) the widely used iterated principal factor analysis technique,

that is, successive factoring of estimates of R 2
iterating on the

communality estimates, witl- the application of a scree test after convergence,

(2) Jöreskog's (1963) non-iterative statistical procedure, with its accom-

panying likelihood-ratio test (in fact, these solutions--with the number of

factors determined--were already available in the source just noted),

(3) Jdreskog's (1967) exact, iterative maximum-likelihood procedure, utilizing

the program UMLFA noted in Jöreskog (1967) with its associated likelihood-

ratio test for the number of factors, and (4) Kaiser's (1970) "Second Gener-

ation Little Jiffy" referred to in the sequel simply as "Little Jiffy").

In the latter non-iterative procedure, the S
-1

RS
-1

matrix, given special

prominence by Harris (1962), is utilized, with the number of latent roots

greater than the mean latent root value taken as the correct number of factors.

This rule is based on no compelling theoretical rationale, but rather was

merely seen to yield a reasonable value. Finally, "Harris factors" of the

image covariance matrix (Kaiser, 1963) were obtained. It may be recalled

that if we express the canonical decomposition of S
-1
-RS

-1
as wrw', then

factors, F1, of order n x r, of the image covariance matrix may be expressed as

2-1 1/2
F = SW [( - I) r ]

r
(1)

where the subscript r indicates that only the first r columns of W and elements

of r have been retained. It is reasonable, as pointed out by Kaiser (1963), to

let r be the number of elements of r greater than one, since for values of

less than one the columns of F
1

would be scaled inversely as to the corres-
-

1.2
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ponding value of F, a condition obviously not desirable. Interestingly, the

number of elements of r greater than one coincides with Guttman's (1954)

stronger lower bound. In the subsequent reporting of findings, we include

this rule, therefore, under the image model, but it should be clear that it

could (probably more appropriately) be characterized as associated with the

common-factor model. Kaiser's (1963) technique of orthogonally rotating

this rather large number of image factors, with the goal of "residualization"

of the less important factors constituted our last generally known procedure

for determining the appropriate number of image factors to retain.

Three of the procedures noted above, for determining the number of factors,

require a considerable amount of subjective judgment. The two scree tests

were first performed by each of the authors independently. The convention

was observed, in the instance of more than one "break" in the curve, of using

the first such break as indicating the number of factors. After these indepen-

dent tests had been performed, the results were compared. With approximately

half of the data sets, the decisions reached by the authors coincided; with

the other half, the task was subsequently undertaken again by both authors

working together. In the end, the authors felt fair confidence in the decision

reached for all but one or two data sets. A similar procedure was employed

in judging whether or not in the image analyses performed, columns of the

image factor pattern matrix were, in fact, "residual." Better agreement was

obtained in the independent j dgments with the image analyses than with the

scree tests, and, overall, greater confidence was felt in the final set of

decisions.

An additional theoretical line of reasoning was initiated and pursued.

It will be recalled that Kaiser's (1960) psychometric rationale for retaining

the number of principal components corresponding to latent roots of R

greater than one revolved around the fact that this number of components has



positive alpha reliability or internal
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n istency. It can be easily shown

that, in fact, the REIRiptA1 components are those components with maximum

internal consistency (where the alpha coefficient for component k is given

by [n/(n - 1)1(1 - 1/Ek), being the kth latent root of R), subject of course,

to the orthogonality constraints within any set. It is possible, however,

that maximum internal consistency may not constitute as desirable a criterion

for the components to satisfy as one involving maximum reliability in the

!II121111/ or equivalence sense. In general, such components will not be

princip41 components. Maximizing the reliability of a composite--provided

that the reliabilities of the parts are known--has been dealt with by Mosier

(1943), Peel (1948), Green (1950), and Gulliksen (1950), and has been noted

in the factor analytic context by McDonald (1970). The problem simplifies

to maximization of the ratio of quadratic forms

= 'R*w/w'Rw,
(2)

where R n x n, is R reduced by the diagonal, n x n matrix of necessarily

known error variances, E2, and unit-length constraints are imposed upon the

unknown vector of weights, w. Algebraic manipulation revals that the

maximization of I in (2) is equivalent to maximization of in

* = w'Rw/leE2w. (3)

The formulation (3 ) implies that the solution involves the canonical decom-

_-1 -1
position of E RE , as

_- -1
E

1
RE VAV'

and the matrix of component pattern coefficients is given by

F EV
r
A
112
r

where V , n x r, contains the f _st r columns of V, and diagonal A , r x

the first r diagonal elements of A. The reliability of component k, r
k

, is
-k

giv n by

rkk 1

14

(6)
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where A is the kth diagonal element of A. Equation (6), then, representsk
a basis for deciding on r, the number of components to retain. One simply

sets r at the point at which component reliabilities drop below an acceptable

level.

A criticism leveled at the Kaiser-Guttman rule of latent roots of R

greater than one has been that the condition of negative alpha reliability

for components beyond r obtains only before transformation, and that after

transformation--a procedure almost always applied--more than r components

may have positive, and even acceptable, alpha internal consistency. The

argument in favor of the Kaiser-Guttman rule that components associated with

latent roots less than one contribute less variance to the whole than does

any one (standardized) variable is subject, of course, to the same criticism.

The maximally reliable components foLuulated in (2) through (6) also share

this criticism, as well as that stemming from the fact that, in ge eral,

reliabilities of the variables are not known. We still regard this alternative

to principal components, however, as potentially useful, given that the variable

reliabilities are known.

If the variable reliabilities are not known, several possibilities exist,

utilizing communalities as lower bounds on reliabilities. Fully iterated

cominunalities would be ideal in that they would be, generally, the strongest

lower bounds; squared multiple correlation coefficients could, instead, be

used to obviate the somewhat unattractive prospect of iteration. Whereas in

(2) we maximized the reliability--or that portion of total component variance

that is true variance (in the generic sense)--we would, in the case of unknown

reliabilities, maximize the ratio of common to total component variance, or,

in a sense, establish components with maximum overlap with the common factors

underlying the variables. Thus, instead of (4), we write
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-1
U -1RU = XBX',

with U, n x n, equal to S if squared multiple correlations are used. The

component pattern matrix, then, is given by

1
= UXB

/2
, or

/2F = SXB1-
c

(7)

and the portion of component k's variance that is common-factor variance is

given, analogously to (6), by 1 1%.

At this point, it may be worthwhile to digress enough to anchor the

material formulated in (2) through (8) to a general component formulation.

In place of (3) and the analogous formulation with U2 replacing E
2
, we may,

extending McDonald' (1970) formulation of the common-factor model, write a

general ratio of quadratic forms

= w'Rw/ 'D2w = maximum, (9)

which implies the canonical decomposition of the matrix D
-1

RD
-1

and subsequent

row rescaling of the principal axes of this matrix. Equation (9) leads to a

general weighted least-squares component solution, of which princ1a4_ component

analysis is that special case with D2 = I (or an unweighted least-squares

component solution). In general, (9) implies the weighting of the residuals

by D
-1

, which in the most useful cases dealt with in (2) through (8) means

weighting the residuals by the inverse error or unique standard deviations..

Clearly, weighting the residuals inversely as to error or what is used to

represent error may often be more desirable than weighting all residuals

equally.

It should be clear to the reader that we had arrived, in (7) and (8),

right into Harris's (1962) "Rao-Guttman" system. In Harris paper, the

expressions 1 - 1/.14 were given as the squared canonical correlations between

the variables and factors (in the "Rao" part of the "Rao-Guttman" relationships),
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and which, in our development, are interpreted identically as maximal coef-

ficients of determination reflecting the (maximized) portions of total com-

ponent variance that are common-factor variance. We, thus, see these components,

which form part of Harris's (1962) scale-free system as, in some respects,

superior to principal components. Analogous to the procedure involving com-

ponent reliabilities (when the variable reliabilities are known), we may

establish minimal values of the common variance/total variance ratio, and

retain only as many such maximum communality components as exceed this minimal

value.

In the present study, such components were obtained, using non-iterated

communality estimates (squared multiple correlations), for each of the 17

data sets. It was decided to set the minimal value for the communality/total

variance ratio--a lower bound, of course, on the component reliabilityto

the mean common variance for the variables, under the (somewhat arbitrary)

assumption that only those components with a portion of common (true) variance

larger thaa the average variable communality (reliability) were interesting.

It is worth noting that with many data sets, the first few components absorbed

almost all the common variance, with the ratio of common variance/total

variance very large. After the rth such component, a large drop occurred,

which the ratio dropped considerably below the mean communality used as the

stopping point. With these data sets, the decision regarding the number 4pf

components was easily made. With a few data sets, however, a fairly gradual

drop in the ratios occurred around the mean communality value, rendering any

decision regarding the number of components considerably more tenuous.

Other criteria regarding an acceptable value for the communality/total variance

ratios could be employed with this procedure, but in any case, a rationale with

more conceptually meaningful anchorings than say, the scree test or Kaiser's

(1970) "Little Jiffy" procedure (for common factors, of course, as well as
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components) is available. It is interesting to note that if we use 2ositive

reliability in this sense or co unallty/total variance ratio) as our crit-

erion, our rule corresponds to Guttman's (1954) stronger lower bound, whereas

the requirement of positive alpha reliability has been seen to correspond

to Guttman's weaker lower bound. Thus, such maximum communality components

bear the same relationship to canonical factor analysis that principal com-

ponents bear to alRha factor analysis.

Results

The results of the reanalyses of the a ormentioned 17 correlation matrices

appear in Table 1. In this table, N refers to the number of persons, to the

number of variables.

Insert Table 1 about here

It is apparent from Table 1 that there was little agreement among the

procedures for any given data set and also, in most cases, little agreement

between the decisions reached through the procedures and that reached in the

source study. The most variable set was N. 16, with estimates ranging from

four to 19, whereas with No. 12 (the familiar Holzinger-Harman Twenty-Four

Psychological Tests), fair consensus was reached (if one ignores the Guttman

stronger lower bound, which is not a widely used "working" rule) of either

four or five factors.

Disregarding, for a moment, the model involved with each procedure, of

all procedures, the Little Jiffy number-of-factors rule tended to suggest--over

all data sets--the smallest number. Next in order was the scree test of the

roots oi the iterated R U
2 matrix, and this test suggested only slightly

fewer factors, overall, than the test associated with the maximum co-_unality

procedure described in the last section. The results of application of the

Kaiser-Cuttman rule and of a scree test on the roots of R suggested a larger
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number of factors (components). Overall, the number of non-residual columns

of the image factor pattern matrix was even larger, and the two likelihood-ratio

tests indicated the largest number of factors, again excluding the Guttman

stronger lower bound, which, as would be expected, was, overall, largest. It

js interesting to note that the results of the likelihood- atio tests were,

in general, considerably closer to the number of factors decided upon in the

source studies than were the other procedures studied, the other procedures

tending, consistently, to indicate fewer factors than in the source studies.

Comparing the procedures in terms of the models employed, one discovers

that those procedures used with the component model tend to suggest the fewest

factors, followed by those procedures used with the common-factor, and lastly,

image models. Over all data sets, the number of non-residual columns of

the orthogonally rotated image factor pattern matrix, the results of the like-

lihood-ratio tests, and the number of factors in the source study tended

to be approximately one third the number of variables. Prom these procedures,

the number of factors/number of variables ratio dropped to about .27 or so for

the widely-used Kaiser-Guttman rule, and to a low--for those procedures

studied--of about .22 for the Little Jiffy rule.

Discussion

It is the authors' belief that the distinctions drawn earlier in this

paper between the explanatory and taxonomic views of factor analysis and

between the various models employed, when combined with the results of the

reanalyses just presented, can be synthesized into the following observation

regarding the number of factors problem: the appropriate number of factors

for a given data set depends, in part, upon the view held regarding factors

and factor analysis and the consequent linear model employed in the analysis.

Put another way, the "correct number of components may not coincide with the

19
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"correct" number of common or image factors. In addition, the "correct"

number of factors may be largely a function of the interpretability of the

factors and quality of simple structure obtained.

In the case of the component model, there is no "correct" number of

components, but only a convenient or useful number. This is true because

components are constructs representing little more than convenient groupings

or categorizations of variables, and just as such constructs have little

theoretical status, the umber _f such constructs has little or none. The

application of such rules as the Kaiser-Guttman then, with implications

strictly speaking more for the component than common-factor model (the

weaker lower bound rationale is regarded as procedurally uninformative),

is seen as inappropriate when a common-factor or image analysis is being

performed. In fact, this psychometric rule breaks down even in the component

case with transformation. The same defect exists, of course, with the

maximum reliability or maximum communality components discussed earlier.

It is probably true that the psychometric rationale should be applied

after, rather than before transformation, if it is to be applied at all.

If the investigator wished to assess either the reliability or communality/

total variance ratios of the transformed components, these quantities could

be obtained by

= diag[T'DrT], (10)

where the kth diagonal element of diagonal 0
tr

r x r is the reliability or

communality/total variance ratio of component k after transformation, diagonal

Dr, r x r, contains such values before transformation, and T, r x r, is

the transformation matrix, consisting of unit-length columns of direction

cosines, the standard orthogonal transformation matrix, in the orthogonal

case, or the transformation from F in (8) to the primary-factor structure

matrix, in the oblique case. It should be clear from the preceding development
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that if the variable reliabilities are known D is given, using (4), by (I

and if we are dealing with communality/total variance ratios, D using (7),

-is given by (I - B 1
). Analogously, we may obtain the alpha reliability of

the components after transformation, in the diagonal elements of diagonal D

r x r, given by

[n/(n-1)]diag[T'(I - M-I) (11)

where M, r x r, Is the diagonal matrix of latent roots of R associated with

the r co ponents retained, and T is as defined above. The investigator, thus,

may well find, if he-retains more components than only those associated with

positive alpha reliability before transformation, that all may have positive--

and perhaps adequate--alpha reliability after transformation. Formulations

(10) and (11), then, may be useful in deciding on the number of components,

if the investigator wishes to transform his components as well as employ a

reliability- or communality/total variance ratio-based decision regarding an

acceptable value for such a coefficient after t ansformation.

If the component model is employed in connection with the importance or

interpretability rationale, the implication appears to be that the investigator

should probably transform more components than he will ultimately interpret

and defer the decision regarding those that he will interpret until after

transformation. Ideally, at this point, a priori considerations will dictate

the number of components that will admit to informative interpretation.

Because of the effects of the number of axes transformed upon the ultimate

interpretation of each, the investigator would be wise to transform this a priori

number as well as, perhaps, one or two more, to determine that number that

is associated with optimally interpretable factors. Not all of these final

factors, of course, need be given equal interpretive status.

With the common-factor and image models--often employed in connection with

the more explanatory view of factors and factor analysis--the notion of a
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"correct" number of factors has greater validity, and may, in fact, be of

considerable theoretical i portance. Additionally, this number will almost

invariably be greater--and perhaps considerably so--than the number of

components generally deemed worth retaining. At the procedural level, the

three rationales--statistical, psycho etric, and importance--exist upon which

to base this decision (the algebraic rational not being tightly fixed to any

widely used rules). The psychometric rationale, manifested in alpha factor

analysis (Kaiser and Caffrey, 1965), in the case of common factors, is

generally ill-founded for the same reasons as with components (although

again it could be applied after transformation) and will generally suggest

fewer common factors Guttman s weaker lower bound) than is likely to be

appropriate. Additionally, as has been pointed out by McDonald (1970), the

weighting of the residuals in alpha factor analysis is at variance with the

most logical weighting. The shortcomings of the statistical inference rationale

have been pointed out earlier. Perhaps the most serious drawback to this

approach is the dependence on N. The question remains, then, of how we might

best employ the importance rationale. Clearly, the Little Jiffy rule is indic-

ative of far too few common factors. The scree test would appear to sugges

too few factors in many cases, and to suffer overall from an inability

always to yield an unequivocable result. We are left with the image analysis-

based "rotation for residualization" procedure as perhaps closest to the

most fruitful operationalization of this rationale.

Again, somewhat in line with what was said regarding the component model,

the most reasonable approach--in the spirit of the importance or interpre-

ability rationale--appears to lie in the extraction of considerably more common

or image factors than will be ultimately interpreted. If some elusive "correct"

number exists, presumably when that many factors are transformed, the resulting

constructs will be untimately clearest and most interpretable. Indeed, if some

22
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smaller number than this are to be eventually interpreted, these chosen factors

will likely be of clearer resolution when formed as a linear transformation of

these many initial coordinates than of only a few, unless, of course, the

greater dimensionality results in the fission of otherwise relatively unitary

constructs. The implication here is that the decision rega ding the number

of factors perhaps most profitably can be made after, rather than before,

transformation. The use of Guttman's atronger lower bound may be most

appropriate, with successively fewer factors transformed until a most inter-

pretable solution results.

The authors are aware of the difficulties at present of operationalizing

the notion of "most interpretabl " as well as the inherent dependence of

such a procedure upon the transfor ation method employed. It may be that the

use of a class of solutions, such as yielded by the general "orthomax" criterion

(see Harris and Kaiser, 1964, or Hakstian, 1972, for greater detail) is called

for. Obviously, if several such orthogonal solutions contained m columns with

only one two large factor pattern coefficients, then fewer factors should

probably be transformed. In summary, the n mber of factors problem--in the

case of common and image factors--should perhaps be somewhat recast into that

of finding the number of factors to transform so that an optimally clear

solution results. This number, then, would represent the theoretically most

justifiable dimensionality of the variables, although fewer than this many

factors may ultimately be interpreted.

Kaiser (1963, 1964) suggested that the orthogonal rotation of an image or

common-factor pattern matrix, with the number of columns dictated by Guttman's

stronger lower bound, could be expected to reveal the important as well as

insignificant factors. The authors believe that future development of the

importance er interpretability rationale may profitably be directed at a more

thorough investigation of this strategy, as well as at ways of detecting
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optimally interpretable solutions or, alternatively, those exhibiting the

best simple structure, since the latter conditi n has been advanced, above,

as a criterion of the correct number of factors.
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FIGU__ CAPTION

Figure 1. Schematic representation ef the underlying views, models, and

bases for inference in factor analysis and the rationales and procedures for

deciding or the correct number of factors.
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